IEEE Toronto Section


Archive for the ‘Communications’ Category

Molecular Communication in Mobile Systems

Friday, September 15th, 2017

Tuesday September 26, 2017 at 3:00 p.m. Professor Robert Schober, Institute for Digital Communications, will be presenting “Molecular Communication in Mobile Systems”.

Day & Time: Tuesday September 26, 2017
3:00 p.m. – 4:00 p.m.

Speaker: Professor Robert Schober
Institute for Digital Communications
Friedrich-Alexander-University Erlangen-Nuremberg, Germany

Location: Room BA 2165
Bahen Centre for Information Technology
40 St George St, Toronto, ON M5S 2E4

Contact: Arin Minasian

Organizers: IEEE Communications Society

Event Link:

Abstract: Molecular communication (MC) is an emerging research area offering many interesting and challenging new research problems for communication engineers, biologists, chemists, and physicists. MC is widely considered to be an attractive option for communication between nanodevices such as (possibly artificial) cells and nanosensors. Possible applications of the resulting nanonetworks include targeted drug delivery, health monitoring, environmental monitoring, and “bottom-up” manufacturing.

In this talk, we give first a brief introduction to MC and nanonetworking. The main focus of the talk is on stochastic channel modelling for mobile MC systems where the transmitter and/or receiver are not fixed but move subject to diffusion and flow. Metrics such as the mean, autocorrelation function, and probability density function of the channel impulse response will be investigated and the notion of coherence time in MC is introduced. Subsequently, the implications of time-variant channels for MC system design are studied, and corresponding channel estimation and non-coherent detection schemes are developed. The talk concludes with a summary of potential topics for future work.

Biography: Robert Schober (S’98, M’01, SM’08, F’10) was born in Neuendettelsau, Germany, in 1971. He received the Diplom (Univ.) and the Ph.D. degrees in electrical engineering from the Friedrich-AlexanderUniversity of Erlangen-Nurnberg (FAU), Germany, in 1997 and 2000, respectively. From May 2001 to April 2002 he was a Postdoctoral Fellow at the University of Toronto, Canada, sponsored by the German Academic Exchange Service (DAAD). From 2002-2011, he was a Professor at the University of British Columbia (UBC), Vancouver, Canada. Since January 2012 he is an Alexander von Humboldt Professor and the Chair for Digital Communication at FAU. His research interests fall into the broad areas of Communication Theory, Wireless Communications, and Statistical Signal Processing.

Dr. Schober received several awards for his work including the 2002 Heinz Maier-Leibnitz Award of the German Science Foundation (DFG), the 2004 Innovations Award of the Vodafone Foundation for Research in Mobile Communications, the 2006 UBC Killam Research Prize, the 2007 Wilhelm Friedrich Bessel Research Award of the Alexander von Humboldt Foundation, the 2008 Charles McDowell Award for Excellence in Research from UBC, a 2011 Alexander von Humboldt Professorship, and a 2012 NSERC E.W.R. Stacie Fellowship. In addition, he received several best paper awards. Dr. Schober is a Fellow of the Canadian Academy of Engineering and a Fellow of the Engineering Institute of Canada. From 2012-2015 he served as Editor-in-Chief of the IEEE Transactions on Communications. He is currently the Chair of the Steering Committee of the new Communication Society (ComSoc) journal IEEE Transactions on Molecular, Biological and Multiscale Communication and serves on the Editorial Board of the Proceedings of the IEEE. Furthermore, he is a Member-at-Large of the Board of Governors and a Distinguished Lecturer of ComSoc.

Molecular Bringing Precision to Measurements for Millimeter-wave 5G Wireless: Conducted and free-field modulated-signal measurements

Friday, September 15th, 2017

Wednesday September 27, 2017 at 12:00 p.m. Dr. Kate A. Remley from Wireless Systems Group, NIST, will be presenting “Molecular Bringing Precision to Measurements for Millimeter-wave 5G Wireless: Conducted and free-field modulated-signal measurements”.

Day & Time: Wednesday September 27, 2017
12:00 p.m. – 1:00 p.m. (Light lunch will be served)

Speaker: Dr. Kate A. Remley
Wireless Systems Group, NIST

Location: Room BA 4287
Bahen Centre for Information Technology
40 St George St, Toronto, ON M5S 2E4

Contact: Arin Minasian

Organizers: IEEE Communications Society

Event Link:

Abstract: At millimeter-wave frequencies and for wide modulation bandwidths, the hardware performance of both modulated-signal sources and vector receivers becomes increasingly nonideal. These nonidealities make test and validation of devices, circuits and systems not only more important, but also more difficult. This is especially true because future systems will likely push the limits of modulation complexity and bandwidth to increase data throughput. We will discuss calibration and measurement techniques to correct millimeter-wave modulated-signal measurements illustrating that traditional assumptions at microwave frequencies may not be adequate at millimeter-wave frequencies.

Biography: Kate A. Remley (S’92-M’99-SM’06-F’13) was born in Ann Arbor, MI. She received the Ph.D. degree in Electrical and Computer Engineering from Oregon State University, Corvallis, in 1999. From 1983 to 1992, she was a Broadcast Engineer in Eugene, OR, serving as Chief Engineer of an AM/FM broadcast station from 1989-1991. In 1999, she joined the RF Technology Division of the National Institute of Standards and Technology (NIST), Boulder, CO, as an Electronics Engineer. She is currently the leader of the Metrology for Wireless Systems Group at NIST, where her research activities include development of calibrated measurements for microwave and millimeter-wave wireless systems, characterizing the link between nonlinear circuits and system performance, and developing standardized test methods for RF equipment used by the public-safety community.

Dr. Remley was the recipient of the Department of Commerce Bronze and Silver Medals, an ARFTG Best Paper Award, and is a member of the Oregon State University Academy of Distinguished Engineers. She was the Chair of the MTT-11 Technical Committee on Microwave Measurements from 2008 – 2010 and the Editor-in-Chief of IEEE Microwave Magazine from 2009 – 2011, and is the Chair of the MTT Fellow Nominating Committee.

Industrial Relations and Toronto ComSoc Chapter: Site Visit G&W/Survalent

Monday, July 24th, 2017

Note: This event has been rescheduled from the original date. The new day and time is Thursday, October 12, 2017.

IEEE Toronto is thrilled to present a tour of the Manufacturing Facility of G&W Canada and Survalent in Brampton. This event is a joint event between IEEE Toronto Industrial Relations and Toronto ComSoc Chapter.

Day & Time: Thursday, October 12, 2017
9:30 a.m. – 11:30 a.m.

Location: 7965 Heritage Rd, Brampton, ON L6Y 0B3

Contact: Maryam Alsomahi

Organizers: Industrial Relations, Communication Society Chapter


Abstract: G&W Electric has been a global supplier of electric power equipment since 1905. Our product offerings include overhead and underground distribution switches, Lazer® Automation solutions, reclosers, distribution and transmission cable accessories, and current limiting system protection devices. Combining cutting-edge design and manufacturing technology with world-class ISO certified quality systems; G&W specializes in custom solutions to meet specific customer requirements.

So whether you are searching for cable terminations and joints, simple manual switching, automation for smart grid applications, or the latest in renewable energy solutions, join G&W for a tour of their SF6 and Solid Dielectric manufacturing process.

Fees & Notes:
$10 for non-IEEE members and free for IEEE members.
1. Attendees are required to bring their own safety shoes and glasses. However, G&W can loan glasses and toe caps for those who don’t have them. For safety purposes, attendees are not allowed to wear shorts or open shoes.
2. Please add a note if you are able to drive/carpool or if you need a ride.

IEEE ComSoc Distinguished Lecture: Topology Preserving Maps: A Localization-Free Approach for 2-D and 3-D IoT Subnets

Saturday, June 3rd, 2017

Tuesday June 13, 2017 at 3:00 p.m. Prof. Anura Jayasumana, Distinguished Lecturer of the IEEE Communications Society, will be presenting a distinguished lecture “Topology Preserving Maps: A Localization-Free Approach for 2-D and 3-D IoT Subnets”. Note refreshments begin at 2:00 p.m.

Day & Time: Tuesday June 13, 2017
2:00 p.m. – 3:00 p.m. Refreshments
3:00 p.m. – 4:00 p.m. Lecture

Speaker: Prof. Anura Jayasumana
Dept. of Electrical & Computer Engineering
Colorado State University, Ft. Collins, CO 80523 USA

Location: Room BA 2135
40 St. George Street
Toronto, ON M5S 2E4

Contact: Eman Hammad

Event Link:

Abstract: Driven by higher potency and lower cost/size of devices capable of sensing, actuating, processing and communicating, the Internet of Things and of Everything promises to dramatically increase our ability to embed intelligence in the surroundings. Subnets of simple devices such as RFIDs and tiny sensors/actuators deployed in massive numbers in 2D and complex 3D spaces will be a key aspect of this emerging infrastructure. Most techniques for self-organization, routing and tracking in such networks rely on distances and localization in the physical domain. While geographic coordinates fit well with our intuitions into physical spaces, their use is not feasible in complex environments. Protocols based on geographical coordinates do not scale well to 3D either. We present a novel localization-free coordinate system, the Topology Coordinates (TC). Interestingly, geographic features such as voids and shapes are preserved in the resulting Topology-Preserving Maps (TPMs) of 2-D and 3-D networks. Ability to specify virtual cardinal directions and angles in networks is a radical change from the traditional approaches. A novel self-learning algorithm is presented to provide network awareness to individual nodes, a step toward large-scale evolving sensor networks. Application of TCs to social networking will be illustrated.

Biography: Anura Jayasumana is a Professor of Electrical and Computer Engineering at Colorado State University, where he also holds a joint appointment in Computer Science. He is the Associate Director of Information Sciences & Technology Center at Colorado State. He is a Distinguished Lecturer of the IEEE Communications Society. His research interests span high-speed networking to wireless sensor networking, and anomaly detection to DDoS defense. He has served extensively as a consultant to industry ranging from startups to Fortune 100 companies. He received the B.Sc. degree from the University of Moratuwa, Sri Lanka and M.S. and Ph.D. degrees in Electrical Engineering from the Michigan State University. Prof. Jayasumana has supervised 20+ Ph.D. and 50+ M.S. students, holds two patents, and is the co-author over 250 papers. He is the recipient of the Outstanding Faculty Award from the Mountain States Council of the American Electronics Association.

Robust Beamforming Design: A New Approach

Saturday, June 3rd, 2017

Wednesday June 7, 2017 at 2:00 p.m. Mostafa Medra, PhD. Candidate, will be presenting “Robust Beamforming Design: A New Approach”.

Day & Time: Wednesday June 7, 2017
2:00 p.m. – 3:00 p.m.

Speaker: Mostafa Medra, PhD. Candidate
Dept. of Electrical & Computer Engineering
McMaster University

Location: Room BA 2145
40 St. George Street
Toronto, ON M5S 2E4

Contact: Eman Hammad

Event Link:

Abstract: Due to the increasing demand for higher data rates, spatial multiplexing received a lot of attention. The ability of a base station to do beamforming so that it can serve multiple users at the same time slot and frequency can provide significantly higher rates. When the channel state information is assumed to be perfectly known at the transmitter, designs as the zeroforcing, regularized zero-forcing and maximum ratio transmission can be applied. Those conventional methods are typically of low complexity. In reality the channel state information is estimated and estimation errors are inevitable. Many beamforming designs tried to incorporate the channel uncertainty model into the design problem. While those robust designs normally work better than the conventional designs, their computational complexity is usually much higher. Today we will provide a new approach to dealing with robust beamforming design that is of low- complexity and performs significantly better than both conventional and current robust methods.

Biography: Mostafa Medra (S’06-M’16) received the B.Sc. and M.Sc. degrees, both in Electrical Engineering, from Alexandria University, Alexandria, Egypt in 2009 and 2013, respectively. Since the fall of 2013, he has been working towards his Ph.D. degree at McMaster University, Hamilton, Ontario, Canada. He held a research position with the Spirtonic research team in 2012-2013, working on digital signal processing for non-destructive testing using ultrasonic waves. His current research interests include MIMO communications, optimization, wireless communications and signal processing.

IEEE Toronto ComSoc: Watson IOT Platform Hands-On Workshop

Tuesday, April 4th, 2017

Thursday May 4, 2017 at 1:00 p.m. Gayathri Srinivasan, IBM Business Development Executive, will be presenting “IEEE Toronto ComSoc: Watson IOT Platform Hands-On Workshop”.

Day & Time: Thursday May 4, 2017
1:00 p.m. – 3:30 p.m.

Speaker: Gayathri Srinivasan
Business Development Executive
IBM Watson Internet of Things Academic Initiative

Location: Galbraith Building, Room Number: GB202
University of Toronto, 35 St George St
Toronto, ON M5S 1A4

Contact: Eman Hammad

Organizers: IEEE Toronto ComSoc

Register: Register for free at

Abstract: The IEEE Toronto Section and University of Toronto – ECE are inviting all interested IEEE members and other engineers, technologists and students to our FIRST hands-on workshop: Watson IoT Platform hands-on.

Workshop agenda:
1. Presentation: IoT Overview
2. IBM Bluemix overview
3. IoT Starter app using Watson IoT boilerplate on Bluemix
4. Work with simulated devices/sensors
5. Learn the basics of Node-Red application development environment
6. Learn to create dashboards
7. Real-time-insights: Use sensor value thresholds to determine actions and text alerts
8. Use Watson APIs (Watson text to speech & Language Translation) capabilities for the alert
9. Explore weather insights
10. Learn to add additional nodes to the node-red environment including dashboard
11. General Q&A

Biography: Gaya Magie is a Business Development Executive leading the IBM Watson Internet of Things Academic Initiative. Gaya collaborates with educational institutions world wide to help faculty and students build IoT skills leveraging IBM resources and platforms available for academia. Gaya has been with IBM since 2001 and has over 18 years of industry experience across various aspects of the business, including development, support, project management, product management, partner relations and sales. In 1996, Gaya received her Bachelor’s degree in Electronics and Communication Engineering from Madurai Kamaraj University in India. Gaya pursued her higher education in the US and in 1998, received a Master’s degree in Computer and Electrical Engineering from West Virginia University. As an IBM employee and continuing to pursue her higher education, Gaya received her Master’s in Business Administration in Global Management.

Innovations in Communications

Friday, January 20th, 2017

Thursday January 26, 2017 at 5:00 p.m. the IEEE Toronto Communication Society is inviting all interested IEEE and other engineers, technologists and students to our FIRST technical/social event themed “Innovations in Communications”.

Speaker: Ahmed Alsohaily, Technology Strategy, Telus
Presenting “Low Power Wireless Access for Internet of Things Connectivity”

Alberto Leon-Garcia, Professor, University of Toronto
Presenting “Enabling Smart Infrastructures with Multitier Cloud Computing on Software-Defined Infrastructure”

Nebu Mathai, Director, Strategic Initiatives + Advanced Engineering Cognitive Systems Corp
Presenting “Cognitive Electromagnetic Spectrum Operations: Emerging Trends and Technologies”

Day & Time: Thursday, January 26th, 2017
5:00 pm – 7:00+ pm

Location: Room SF 2202, Sandford Fleming Building
10 King’s College Rd, Toronto, ON M5S 3G8

Contact: Eman Hammad

Organizer: IEEE Toronto Communication Society

Kindly RVSP for event and dinner here.

We are also extending the invitation to interested volunteers to join our team, and for interested speakers to contact us.

Schedule: 5:00 pm – 5:05 pm Opening Remarks
5:05 pm – 5:30 pm Talk #1: Low Power Wireless Access for Internet of Things Connectivity
5:30 pm – 5:40 pm Coffee Break
5:45 pm – 6:15 pm Talk #2: Enabling Smart Infrastructures with Multitier Cloud Computing on Software-Defined Infrastructures
6:15 pm – 6:45 pm Talk #3: Cognitive Electromagnetic Spectrum Operations: Emerging Trends and Technologies
6:45 pm – 8:00 pm Dinner and Networking

Talk #1: Low Power Wireless Access for Internet of Things Connectivity

Abstract: This talk will discuss the emergence of Low Power Wireless Access (LPWA) connectivity to cater to many Internet of Things (IoT) applications. After providing an overview of LPWA challenges, potential solutions and innovations, 3GPP Narrowband IoT (NB-IoT) solution will be detailed as prime candidate technology for providing LPWA connectivity.

Biography: Ahmed Alsohaily (S’13–M’15) received his Ph.D. from the University of Toronto in 2015 and is currently the Assistant Director of the Wireless Lab at the Department of Electrical and Computer Engineering in University of Toronto, where he holds a MITACS Elevate postdoctoral fellowship. He is also a member of the Technology Strategy team at Telus responsible for standardization at 3GPP RAN. He actively contributes to the IEEE ComSoc Standards Development and serves as an advisor to the NGMN Alliance

Talk #2: Enabling Smart Infrastructures with Multitier Cloud Computing on Software-Defined Infrastructure

Abstract: In this project we discuss the SAVI approach to integrate IoT, SDN, and cloud computing technologies into a platform that can support smart applications. From 2011 to 2016 the NSERC Strategic Network for Smart Applications on Virtual Infrastructures (SAVI) investigated the convergence of computing, networking, and sensing to create an agile platform for smart applications. We introduce SAVI’s multitier computing cloud that converges computing, SDN and sensing, and we describe the testbed that was deployed across Canada and federated with the U.S. We discuss use cases that are operational on SAVI including: service chaining, testbed-wide orchestration, intrusion-detection and protection using NFV, multilayer monitoring and modeling using machine learning, and a live intelligent transportation dashboard for the Greater Toronto Area

Biography: Professor Alberto Leon-Garcia is Distinguished Professor in Electrical and Computer Engineering at the University of Toronto. He is a Fellow of the Institute of Electronics an Electrical Engineering “For contributions to multiplexing and switching of integrated services traffic”. He is also a Fellow of the Engineering Institute of Canada and the American Association for the Advancement of Science. He has received the 2006 Thomas Eadie Medal from the Royal Society of Canada and the 2010 IEEE Canada A. G. L. McNaughton Gold Medal for his contributions to the area of communications. Professor LeonGarcia is author of the leading textbooks: Probability and Random Processes for Electrical Engineering, and Communication Networks: Fundamental Concepts and Key Architecture. Leon-Garcia was Founder and CTO of AcceLight Networks in Ottawa from 1999 to 2002. He was Scientific Director of the NSERC Strategic Network for Smart Applications on Virtual Infrastructures, and Principal Investigator of the ORF Research Excellence project on Connected Vehicles and Smart Transportation.

Talk #3: Cognitive Electromagnetic Spectrum Operations: Emerging Trends and Technologies

Abstract: Electromagnetic spectrum operations (EMSO; a major component of CEMA, Cyber Electromagnetic Activities) are fundamental to a variety of defense and public security contexts. Forward-thinking roadmaps have highlighted the need to extend this to cognitive EMSO on dynamic land/water/air/space platforms.

Current solutions for CEMA — all based on COTS technologies — are lacking in several respects. Higher performance solutions have unfavorable size, weight and power (SWaP) characteristics, and low agility; the lower-end offers questionable quality of measurement with low flexibility. Additionally, the lack of sufficient edge computing to handle the high loads of radio signal processing often preclude aggressive real-time online sensing.

This talk will present a solution for RF situational awareness that disruptively surmounts these issues in all respects. Rather than employ COTS technologies with poor SWaP and mediocre performance, we present a custom integrated circuit (IC) that enables ultra-low SWaP with high-performance. Central to the solution is the integration of significant on-chip computing resources that enable processing of high-bandwidth RF data directly at the source. The lack of a hardened algorithmic processing chain enables flexible and rapid reconfiguration of the sensor-actuator personality. On-chip computation further facilitates a very agile loop from the high-level algorithmic processing to the low-level RF, analog and digital front ends.

We will also discuss how this uniquely Canadian technology aligns with and enables advanced defense applications.

Biography: Nebu John Mathai, PhD, PEng, is the Director of Strategic Initiatives and Advanced Engineering at Cognitive Systems Corp, a Waterloo, Ontario company. In this dual-mandate role, he directs a team at the forefront of advanced radio and computer science/engineering, while engaging with industrial, government and defence partners who require the bleeding edge. His team produced the highperformance low-power multi-processor computing architecture that forms the foundation of the company’s cognitive-radio-on-chip offering. Beyond this, they have developed real-time RF propagation and data fusion tools, and software suites for advanced cognitive radio sensing and communications applications. He also leads a number of strategic initiatives to anticipate and execute on the RF situational awareness requirements posed by next-generation civilian and defence roadmaps pertaining to electromagnetic spectrum operations.

5G RAN – Standards Developments

Saturday, December 10th, 2016

Wednesday December 14th, 2016 at 4:30 p.m. Dr. Ivo Maljevic, senior member of TELUS technology strategy team, will be presenting “5G RAN – Standards Developments”.

Speaker: Dr. Ivo Maljevic
Senior Member, TELUS Technology Strategy Team, Chief Technology Office
Adjunct Lecturer, University of Toronto

Day & Time: Wednesday, December 14th, 2016
4:30 p.m. – 5:30 p.m.

Location: Room BA1230
Bahen Centre for Information Technology
40 St. George St, Toronto, ON M5S 2E4
University of Toronto

Organizer: IEEE Communications Society

Contact: Eman Hammad

Abstract: The 3GPP is in the process of standardizing the next, 5th generation of mobile communications. This talk provides an up to date overview of the current standardization status and focuses on the Radio Access Network (RAN) part. Specifically, it addresses the completion timelines of each of the phases (there are 3 phases), use cases that are driving the design and architecture options. Additionally, 5G spectrum, key performance targets & requirements and air interface proposals and open areas for research are discussed. Finally, the talk privies an up to data information about the 5G trials conducted so far.

Biography: Dr. Ivo Maljevic is a senior member of TELUS technology strategy team within the Chief Technology Office, where he focuses on defining a long-term vision for the RAN, spectrum strategy and standardization. In terms of broader industry involvement, in the past he has participated in the Canadian Evaluation Group for the IMT-Advanced proposal, and now he is actively involved in NGMNs and ATIS 5G initiatives. He also participates in 3GPP RAN sessions. Additionally, Ivo is an adjunct lecturer at the University of Toronto. Prior to TELUS, he was with Soma Networks, and before that, he worked at Motorola Canada. His areas of expertise include LTE/WiMAX/CDMA wireless systems, software defined radio, signal processing, and digital communications theory.

Sensor Data Fusion, Levels, Models and Approaches

Friday, November 4th, 2016

Friday November 25, 2016 at 3:00 p.m. Behzad Moshiri, senior member of IEEE and Professor at University of Waterloo & University of Tehran, will be presenting “Sensor Data Fusion, Levels, Models and Approaches”.

Speaker: Professor Behzad Moshiri
University of Waterloo
University of Tehran
Senior Member of IEEE
Member of ISIF

Day & Time: Friday, November 25, 2016
3:00 p.m. – 4:00 p.m.

Location: BA1230, Bahen Centre, 40 St. George Street

Abstract: In this talk a review on sensor data fusion concept and multi-sensor array which is usually referred as sensor data fusion will be presented. Generally, “Sensor Data Fusion” as well as “Information Fusion” concepts deal with the synergistic combination of data or information provided by various knowledge sources such as sensors or information extractors, in order to provide a better understanding of a given scene or obtaining an accurate knowledge discovery. The use of sensor data fusion concept has advantages such as “Redundancy”, “Complementary”, “Timeliness” and “Less Costly Information”. The advantages of multiple-sensor data fusion approaches in terms of cost, accuracy and reliability will be explained. Fusion characterization addressing the application domain, fusion objective, fusion process input-output (I/O) characteristics and sensor suite configuration will be shown. In this seminar the different levels and models of Data Fusion will be presented and also different conventional and intelligent data fusion approaches will be introduced. Finally, some typical examples on applications of sensor data fusion in different fields such as Robotics, Process Control, Information Technology and Intelligent Transportation Systems (ITS) will be presented.

Biography: Behzad Moshiri received his B.Sc. degree in mechanical engineering from Iran University of Science and Technology (IUST) in 1984 and M.Sc. and Ph.D. degrees in control systems engineering from the University of Manchester, Institute of Science and Technology (UMIST), U.K. in 1987 and 1991 respectively. He joined the school of electrical and computer engineering, University of Tehran in 1992 where he is currently professor of control systems engineering. He was the member of ISA (Canada Branch) in 1991-1992. He has been the member of ISIF since 2002 and senior member of IEEE since 2006. Dr. Moshiri is adjunct professor in department of electrical and computer engineering at university of Waterloo since 2014. His research collaborations with university of Waterloo, university of Toronto and university of Ryerson have been initiated since 2007 and the applications of sensor data fusion methods in different disciplines were the core and main field of research ties with colleagues in above mentioned universities during last decade. He is the author/co-author of more than 300 articles including 100 journal papers and 21 book chapters. His fields of research include mechatronics, automation, advanced industrial control design, smart sensing system design, broad spread of applications of “sensor/data fusion” as well as “information fusion” concepts in mechatronics, process control, robotics, information technology, bioinformatics, biomedical engineering and intelligent transportation systems (ITS).

Will 2020 witness a significant impact empowered by IoT, 5G and virtualization?

Monday, October 24th, 2016

Monday November 14, 2016 at 12:00 p.m. Fawzi Behmann, President, TelNet Management Consulting, Inc., will be presenting “Will 2020 witness a significant impact empowered by IoT, 5G and virtualization?”.

Speaker: Fawzi Behmann
President, TelNet Management Consulting, Inc.
IEEE NA ComSoc Vice Chair

Day & Time: Monday, November 14, 2016
12:00 p.m. – 1:00 p.m.

Location: BA 2179
Bahen Centre for Information Technology
University of Toronto
40 St George St, Toronto, ON M5S 2E4

Contact: Eman Hammad

Abstract: Several technologies are converging empowering IoT and delivering a greater impact and advance services to multiple markets by 2020’s.This presentation will introduce the concept of IoT and architectural evolution from a pre-IoT to Collaborative IoT impacting many markets such as home, health, automotive, enterprise, transportation and infrastructure. This will be enriched by several examples.

Advancement in computing processing power, cloud based services and virtualization have resulted in an environment and platform for convergence some of the key technologies for development and deployment of new products, applications and services that will have a great impact on improving business processes and quality of life.

The talk will provide various examples and scenarios at different areas such as home, health & wellness, car, building, infrastructure and city.

Solution building blocks include sensing, aggregation, and data analytics. Examples of some of the adjacent technologies such as 3D, Robot, Drone and Wearables will be highlighted. Finally the talk will conclude with some of the factors and challenges to deliver scalable solutions, delivering better quality of services and experience. These include development platforms, 5G, virtualization, collaborative applications and security.

Takeaway points:
· Understanding of rapid evolution of IoT & and other related technologies.
· Emerging of ecosystem cloud based big data/analytics – use cases.
· Considerations for scalable and secure networks.

Biography: Fawzi is a visionary, thought leader, author and contributor in advancing adoption of technology in serving humanity. Fawzi spent over 30 years in industry and held various executive and leadership positions with Tier 1 companies in the areas of communications and networks spanning Semiconductor, communication systems and service provider. Fawzi was a principle architect and championed the definition and the developing of integrated pre-IoT telecom alert system and networking management solution at Teleglobe Canada. He was a senior product manager with Nortel Networks for product release for enterprise, broadband edge and core nodes. Fawzi also served as the Director of Strategic Marketing with Motorola/Freescale for SoC networking & Communications product line in Austin, Texas.

Fawzi is passionate about technology automation and has founded TelNet Management Consulting Inc. in 2009 offering consulting services in the areas of technology trends and positioning for smart networking and IoT/GIS solutions. Examples included Solar Energy, Public Safety – emergency response systems. He organized and chaired workshops, tutorials and was a distinguished speaker on key topics such as IoT, 5G, virtualization and Big Data/Analytics. Fawzi is a board member with several companies and had several publication including a recent book on the subject of future IoT “Collaborative Internet of Things for Future Smart Connected Life and Business” published by Wiley, June 2015,subjectCd-EEJ0.html

Fawzi is active in international forums and standards activities with ITU, ITRS and IEEE Fawzi is a senior member of IEEE, and is currently the ComSoc NA vice chair, CTS Conference & PACE Chair, and ComSoc/SP/CS Austin chapter chair. He was the recipient of several awards from Industry and IEEE including CEO Freescale Diamond Chip Award in 2008, and IEEE ComSoc Chapter of the year award in 2015 and Outstanding R5 member award for 2013, 2014 and 2015. He is currently serving as Conference chair for IEEE Central and organized sessions and workshops at BHI, Himss, Smart Tech on IoT and healthcare.

Fawzi holds a Bachelor of Science with honors and distinction from Concordia University, Montreal; Masters in Computer Science from the University of Waterloo, Ontario and Executive MBA from Queen’s University, Ontario Canada.